WHAT THE PROGRAMS DO

Here is a short description of each of the programs. For more detailed discussion you should definitely read the documentation file for the individual program and the documentation file for the group of programs it is in.

PROTPARS
Estimates phylogenies from protein sequences (input using the standard one-letter code for amino acids) using the parsimony method, in a variant which counts only those nucleotide changes that change the amino acid, on the assumption that silent changes are more easily accomplished.
DNAPARS
Estimates phylogenies by the parsimony method using nucleic acid sequences. Allows use the full IUB ambiguity codes, and estimates ancestral nucleotide states. Gaps treated as a fifth nucleotide state.
DNAMOVE
Interactive construction of phylogenies from nucleic acid sequences, with their evaluation by parsimony and compatibility and the display of reconstructed ancestral bases. This can be used to find parsimony or compatibility estimates by hand.
DNAPENNY
Finds all most parsimonious phylogenies for nucleic acid sequences by branch-and-bound search. This may not be practical (depending on the data) for more than 10 or 11 species.
DNACOMP
Estimates phylogenies from nucleic acid sequence data using the compatibility criterion, which searches for the largest number of sites which could have all states (nucleotides) uniquely evolved on the same tree. Compatibility is particularly appropriate when sites vary greatly in their rates of evolution, but we do not know in advance which are the less reliable ones.
DNAINVAR
For nucleic acid sequence data on four species, computes Lake's and Cavender's phylogenetic invariants, which test alternative tree topologies. The program also tabulates the frequencies of occurrence of the different nucleotide patterns. Lake's invariants are the method which he calls "evolutionary parsimony".
DNAML
Estimates phylogenies from nucleotide sequences by maximum likelihood. The model employed allows for unequal expected frequencies of the four nucleotides, for unequal rates of transitions and transversions, and for different (prespecified) rates of change in different categories of sites, with the program inferring which sites have which rates.
DNAMLK
Same as DNAML but assumes a molecular clock. The use of the two programs together permits a likelihood ratio test of the molecular clock hypothesis to be made.
DNADIST
Computes four different distances between species from nucleic acid sequences. The distances can then be used in the distance matrix programs. The distances are the Jukes-Cantor formula, one based on Kimura's 2- parameter method, Jin and Nei's distance which allows for rate variation from site to site, and a maximum likelihood method using the model employed in DNAML. The latter method of computing distances can be very slow.
PROTDIST
Computes a distance measure for protein sequences, using maximum likelihood estimates based on the Dayhoff PAM matrix, Kimura's 1983 approximation to it, or a model based on the genetic code plus a constraint on changing to a different category of amino acid. The distances can then be used in the distance matrix programs.
RESTML
Estimation of phylogenies by maximum likelihood using restriction sites data (not restriction fragments but presence/absence of individual sites). It employs the Jukes-Cantor symmetrical model of nucleotide change, which does not allow for differences of rate between transitions and transversions. This program is VERY slow.
SEQBOOT
Reads in a data set, and produces multiple data sets from it by bootstrap resampling. Since most programs in the current version of the package allow processing of multiple data sets, this can be used together with the consensus tree program CONSENSE to do bootstrap (or delete-half-jackknife) analyses with most of the methods in this package. This program also allows the Archie/Faith technique of permutation of species within characters, as well as block bootstrap resampling.
COALLIKE
May be used, after using SEQBOOT and DNAMLK, to take a treefile that they produce, and make an estimate of the likelihood curve for the parameter 4Nu (4 times the product of effective population size and mutation rate) when the sequences are a sample from a population and the tree is assumed to be produced by the "coalescent" process.
FITCH
Estimates phylogenies from distance matrix data under the "additive tree model" according to which the distances are expected to equal the sums of branch lengths between the species. Uses the Fitch-Margoliash criterion and some related least squares criteria. Does not assume an evolutionary clock. This program will be useful with distances computed from DNA sequences, with DNA hybridization measurements, and with genetic distances computed from gene frequencies.
KITSCH
Estimates phylogenies from distance matrix data under the "ultrametric" model which is the same as the additive tree model except that an evolutionary clock is assumed. The Fitch-Margoliash criterion and other least squares criteria are assumed. This program will be useful with distances computes from DNA sequences, with DNA hybridization measurements, and with genetic distances computed from gene frequencies.
NEIGHBOR
An implementation by Mary Kuhner and John Yamato of Saitou and Nei's "Neighbor Joining Method," and of the UPGMA (Average Linkage clustering) method. Neighbor Joining is a distance matrix method producing an unrooted tree without the assumption of a clock. UPGMA does assume a clock. The branch lengths are not optimized by the least squares criterion but the methods are very fast and thus can handle much larger data sets.
CONTML
Estimates phylogenies from gene frequency data by maximum likelihood under a model in which all divergence is due to genetic drift in the absence of new mutations. Does not assume a molecular clock. An alternative method of analyzing this data is to compute Nei's genetic distance and use one of the distance matrix programs.
GENDIST
Computes one of three different genetic distance formulas from gene frequency data. The formulas are Nei's genetic distance, the Cavalli- Sforza chord measure, and the genetic distance of Reynolds et. al. The former is appropriate for data in which new mutations occur in an infinite isoalleles neutral mutation model, the latter two for a model without mutation and with pure genetic drift. The distances are written to a file in a format appropriate for input to the distance matrix programs.
CONTRAST
Reads a tree from a tree file, and a data set with continuous characters data, and produces the independent contrasts for those characters, for use in any multivariate statistics package. Will also produce covariances, regressions and correlations between characters for those contrasts.
MIX
Estimates phylogenies by some parsimony methods for discrete character data with two states (0 and 1). Allows use of the Wagner parsimony method, the Camin-Sokal parsimony method, or arbitrary mixtures of these. Also reconstructs ancestral states and allows weighting of characters.
MOVE
Interactive construction of phylogenies from discrete character data with two states (0 and 1). Evaluates parsimony and compatibility criteria for those phylogenies and displays reconstructed states throughout the tree. This can be used to find parsimony or compatibility estimates by hand.
PENNY
Finds all most parsimonious phylogenies for discrete-character data with two states, for the Wagner, Camin-Sokal, and mixed parsimony criteria using the branch-and-bound method of exact search. May be impractical (depending on the data) for more than 10-11 species.
DOLLOP
Estimates phylogenies by the Dollo or polymorphism parsimony criteria for discrete character data with two states (0 and 1). Also reconstructs ancestral states and allows weighting of characters. Dollo parsimony is particularly appropriate for restriction sites data; with ancestor states specified as unknown it may be appropriate for restriction fragments data.
DOLMOVE
Interactive construction of phylogenies from discrete character data with two states (0 and 1) using the Dollo or polymorphism parsimony criteria. Evaluates parsimony and compatibility criteria for those phylogenies and displays reconstructed states throughout the tree. This can be used to find parsimony or compatibility estimates by hand.
DOLPENNY
Finds all most parsimonious phylogenies for discrete-character data with two states, for the Dollo or polymorphism parsimony criteria using the branch-and-bound method of exact search. May be impractical (depending on the data) for more than 10-11 species.
CLIQUE
Finds the largest clique of mutually compatible characters, and the phylogeny which they recommend, for discrete character data with two states. The largest clique (or all cliques within a given size range of the largest one) are found by a very fast branch and bound search method. The method does not allow for missing data. For such cases the T (Threshold) option of MIX may be a useful alternative. Compatibility methods are particular useful when some characters are of poor quality and the rest of good quality, but when it is not known in advance which ones are which.
FACTOR
Takes discrete multistate data with character state trees and produces the corresponding data set with two states (0 and 1). Written by Christopher Meacham.
DRAWGRAM
Plots rooted phylogenies, cladograms, and phenograms in a wide variety of user-controllable formats. The program is interactive and allows previewing of the tree on PC graphics screens, and Tektronix or DEC graphics terminals. Final output can be on a laser printer (such as the Apple Laserwriter or HP Laserjet), on graphics screens or terminals, on pen plotters (Hewlett-Packard or Houston Instruments) or on dot matrix printers capable of graphics (Epson, Okidata, Imagewriter, or Toshiba).
DRAWTREE
Similar to DRAWGRAM but plots unrooted phylogenies.
CONSENSE
Computes consensus trees by the majority-rule consensus tree method, which also allows one to easily find the strict consensus tree. Does NOT compute the Adams consensus tree. Trees are input in a tree file in standard nested-parenthesis notation, which is produced by many of the tree estimation programs in the package when the Y option is invoked. This program can be used as the final step in doing bootstrap analyses for many of the methods in the package.
RETREE
Reads in a tree (with branch lengths if necessary) and allows you to reroot the tree, to flip branches, to change species names and branch lengths, and then write the result out. Can be used to convert between rooted and unrooted trees.

Programs in the Unsupported Division

The Unsupported Division of PHYLIP consists of two programs contributed by others that may be useful to you and have kindly been contributed by their authors. Those authors retain full copyright to their programs and documentation files. They are provided in the PHYLIP source code distribution but have not been provided as executables in the executables distribution. All questions about these programs should be directed to their authors, whose electronic mail addresses and regular mail addresses are given in their documentation files.

MAKEINF
This program by Arend Sidow can be used to translate the output files from Jotun Hein's popular multiple-sequence alignment program into PHYLIP input files. It also allows you to selectively analyze different codon positions and different organisms. The output from other alignment programs can rather easily be edited into a form that it will read.
PROTML
This large Pascal program from Jun Adachi and Masami Hasegawa carries out maximum likelihood estimation of phylogenies from protein sequence data. It is quite analogous to DNAML, but uses instead of a model for DNA evolution the PAM matrix model of Margaret Dayhoff. Because of the larger number of states (20 instead of 4) it is necessarily slower than DNAML by a large factor. However the authors have adopted a different, and faster, rearrangement strategy to search among tree topologies for the best one. ProtML does not yet incorporate the Categories feature of DNAML and DNAMLK which allows different rates of evolution at different sites, without the user specifying in advance which site has which rate of evolution. For support, contact them at the Internet addresses hasegawa@ism.ac.jp and adachi@sunmh.ism.ac.jp at the Institute of Statistical Mathematics, Tokyo, Japan.


Back to the main PHYLIP page
Back to the SEQNET home page
Maintained 15 Jul 1996 -- by Martin Hilbers(e-mail:M.P.Hilbers@dl.ac.uk)